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P O R O U S  M E M B R A N E S  O F  F I N I T E  T H I C K N E S S  
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The authors suggest a cellular model  of  a gas-permeable membrane with account for surface diffusion of  gas 

molecules on pore walls. The model  is compared to experimental data. 

The available theoretical models of diffusion of inert gases in polymer membranes are grouped, as a rule, 

into two classes that differ substantially in their sets of parameters: i) Knudsen gas diffusion in channels (pores), 

in particular, with account for migration over the surface of capillaries and 2) gas diffusion in monolithic 

(nonporous) polymers. However, recently some experimental works have appeared in which the authors succeed in 

accomplishing a continuous conversion of monolithic films into porous ones and vice versa by stretching polymer 

films [1 ]. In order to describe theoretically the gas permeability of such films, it is necessary to construct a model 

in which both types of migration could enter as limiting ones. 

In considering gas diffusion in monolithic films [2 ] and in channels of perforated membranes [3 ] emphasis 

is placed on the role of surface resistances of membranes, which begins to manifest itself in experiments as the 

film thickness decreases. However, the mechanisms of occurrence of surface resistance in  monolithic and porous 

membranes differ substantially and it is unclear how they may be combined in a single model. 

We suggest a cellular model of a porous membrane that takes into account surface diffusion both on the 

membrane ends and on pore walls. We also consider a layered model of migration of a gas in a monolithic film. 

Analysis of the expressions obtained for gas permeability makes it possible to find conditions under which these 

models produce consistent results. 

We consider diffusion in a monolithic membrane representing a single-crystal infinite plate with thickness L. 

As is known from experiments and theoretical studies [4 ], near the surface of a solid the lattice constant 

decreases, thus causing a change in the heat of dissolution of atoms and their diffusional barriers near the surface. 

As a rule, only the first layer becomes distorted, and the distortion of the other layers may be neglected. In this 

case, the potential of interaction of gas atoms with a solid may be represented in the form shown in Fig. 1 (variations 

in the interaction energy in the plane of the layers are ignored). 

The model potential of the membrane (Fig. 1) may be used for any number of layers, including a 

monolayer. 
To simplify consideration of the balance of particles in each potential welt (in the i-th layer), we make the 

following assumptions: the probability of gas adsorption on the surface is equal to 1; the flux of atoms incident on 

the membrane has a Maxwellian distribution; the time of particle thermalization in each potential well is much 

shorter than the time of particle residence in it, which permits us to consider distribution of particle in each layer 

to be equilibrium (the Boltzmann one); the degree of filling of any layer is much less than unity. 

Then the system of equations of the layer-by-layer balance of particles may be written as 

, 1 [ 
-~ naY t + -~ nl v t exp -- = ~- nOv t exp 

-~/'tO}' t exp k T  + -~ n2v t exp - 

- ~-~ exp E#  
+ k T  ' 

= l n l v t [ e x p ( - - ~ )  + e x p  ( - ~ T ) I  , ( 1 )  
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Fig. 1. 
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where l is the number  of membrane layers, l -- L/d ;  6 is the lattice spacing. Each term in system (1) represents 

the number  of particles coming into each potential well per unit area per unit time (the left-hand side of the 

equations) or leaving it (the r ight-hand side). 

Solving system (1), we obtain for the flux of gas particles per unit area of the membrane 

1 1 

exp + exp kT  - exp E~--TQ 

In ref. [2], an analogous (to (2)) formula for the flux through a membrane is obtained, which under  the 

assumptions made and in the notation adopted may be written as 

1 1 
j = ~ v , ( n a _ n b  ) ( - ~ - Q )  , (3) 

2 + l exp + a o + a l 

where ao and a l are the surface resistances of the membrane. A comparison of (2) and (3) yields 

exp kT  

When the surfaces are the same (a0 = at): 

From the physical meaning of formula (2) it follows that exp (E  - Q / k T )  is the resistance of one layer 

inside the membrane,  exp (Eg - Q / k T )  is the resistance of a surface layer. Therefore  the term "surface resistance" 

for a i is inappropriate since it is a resistance difference between a surface layer and a layer inside the membrane.  

Consequently,  it is better  to rewrite formula (2) in the form 

1 1 (5) 

2 1 + exp k T  + ( l - 2 )  exp 
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The n  in the first  brackets  the denominator  will contain the res is tance of an adsorpt ion  layer  exp 

( U -  U / k T )  = 1 and of a surface layer exp (Eg - Q / k T ) ,  while the second summand pertains to the volume 

resistance of the membrane.  

When the fields are not distorted near  the surface (Eg = E),  we have from (5) 

1 1 
J = - 4 v t ( n a - n b )  2 + l exp ( Ek--~T ) " (6) 

If l exp (E  - Q / k T )  < < 1, i.e., the volume resistance of the membrane is much lower than the resistance 

of adsorption layers, we may obtain a flow through the membrane that is maximum under  the given conditions, 

independent  of its thickness, and equal to 

1 na - nb (7) 
Ym =~vt 2 

We may suggest one more approach to determining the flow through a solid membrane.  This approach 

involves solving of the equation of diffusion inside the membrane. Surface layers are considered as before. 

The equation of diffusion inside the membrane is [5 ] 

02n/Ox 2 = O .  ( 8 )  

Its solution is the function 

n ( x )  = a o + a l x ,  

where ao, al are unknown coefficients. 

For adsorption layers,  we consider the Langmuir mode of adsorption, i.e., we assume that there is a 

maximum value nm of n on the surface. 

Taking into consideration the boundary conditions at the boundary of the membrane volume and a surface 

layer (equality of flows and of chemical potentials), we arrive at the system of equations 

(1 -- no /nm)  -~ rtaV t + ~ nlV t exp -- = 

1 [ (Q+ 
= ~ n o v  t exp - ~ - ~  + e x p  k7 ~1 , 

1 (-Q 
-~ nov t exp k T  = -~ n l v  t exp  - (1 - no /nm)  - a i D ,  

n 1 = a 0 + a l ~ ,  
(9) 

1 
-~ nlv t e x p  ( - k T  = -~ vtnt_ 1 exp -- (1 --  nl/nrn ) + a i D ,  

nl_ 1 = a o + a l ( L -  6) , 

( 1 - n l / n m )  -~nbv t + ~ n l _ l v  t e x p  - ~ = 

1 [ ( 
= - ~ n l v  t exp - ~  + e x p  - k T  ' 
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where D is the volume diffusion coefficient of the gas in the membrane volume. 

Solving system (9), we obtain for the flow 

+ 2 exp 

1 [ ( , Q )  
j = -~ v t (n  a - rib) 2 + ~ ~ exp - ~ + 2 exp k T  - 

.+n l ll (Q) 
+ - -  exp + exp - + nm ~ -T6- ~T 

n a + n b 

k T  
- -  exp + 

n m 
(10) 

An expression for the diffusion coefficient for models similar to ours is well-known in the li terature [5 ]: 

D = ~ exp - (11) 

where ~0 is the oscillation period of a diffusing particle. For our model, 26/To = v, and therefore 

l l v t 6  (E) 
4 D - l e x p  ~-~ . 

Substituting this expression into (10), we obtain 

1 { (_) 
j = --4 v t (n  a -  nb) 2 + l e x p  E ~ - T Q  + 2  

exp E - Q  
+ 

+ 2 e x p  k T  - 2 e x p  x 

X 
[na+nb 

- -  exp 
n m 

+ ~ exp ~-~ 

g/m 

If n a / n  m e x p ( U / k T )  << 1 (i.e., in the case of slight filling of the surface), we obtain 

1 1 
j = -~ V t (rl a -  rib) • 

which coincides completely with (2). 

Thus,  it may be considered that when the particles are in local equilibrium in each potential well (the time 

of their thermalization is much shorter than that of their residence in a potential well) both approaches yield the 

same result. This was to be expected since diffusion equation (8) may be obtained from consideration of random 

migration of particles in the system of potential wells (Fig. 1). 

If local equilibrium does not exist at distances of the order  of the dimensions of a well, then a kinetic 

examination of this system with use of the velocity distribution function of the gas atoms is needed.  

In order  to illustrate how the above models work and to show the influence of surface defects on the gas 

flow through a monolithic membrane,  we consider the experiment described in [2 ]. 
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Fig. 2. 

TABLE 1. Results of Processing of Experimental Data in [2 ] 

Quantity 

aef- l0 s mole/(m a. Pa) 

ct 0 + a 1 

D. 101~ m2/sec 

02 

19 

4.106 

1.9 

Gas 

N2 C02 

12 225 

7.106 3.105 

1.8 1.6 

TABLE 2. Parameters of Gas Diffusion in a Membrane 

Quantity (kcal/mole) Gas 
02 N2 C02 

(2 
E 

eg-Q 
E - Q  

-0.46 

3.07 

8.64 

3.53 

-0.73 

3.14 

8.97 

3.87 

1.00 

3.08 

7.09 

2.07 

In the experiment, the permeability of a polymer membrane was measured for different gases. The 

membrane was made of polyarylensulfonoxide-polydimethylsiloxane block copolymer (PSS). In [2 ], processing of 

the experimental data yielded a 0 + al, the effective dissolution aef, and the diffusion coefficients D for different 
gases (Table 1). In our model 

%f = ~ exp , (I 2) 

D = ~ v  t6exp  - ~  . 

o 

Assuming 6 (the length of the jump of a molecule) to be equal to approximately 3 A, we may determine E 

and Q for different gases by formulas (12) and (13). Moreover, using (4) we may find Eg - Q, which characterizes 
the surface resistance of the polymer for different gases. This surface resistance may be associated both with a 

decrease in the lattice constant [4 ] and with polymer inhomogeneity. Calculation results are listed in Table 2. 

The experimental data show that even for sufficiently high l the influence of surface resistances may be 
significant at high Eg. 

We now consider gas diffusion in a perforated membrane with account for surface migration of atoms on 
the membrane ends and the channel walls (Fig. 2). In the cellular model, a membrane of thickness L is permeated 
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with channels of diameter 2R so that the mean distance (Ax/~) between the centers of neighboring channels is the 

same. 

Since all the cells are assumed to be the same, we consider a single cell, instead of the whole membrane, 

with the corresponding conditions at its boundary. For simplicity we substitute a circular cell with radius A for the 

square cell. 

Next, we write a system of surface diffusion equations for a single cell: 

al  aa (14) - D1 Aal =K1 - -~1  ' - D2 A n 2 = 0 '  - D  3An 3 =~c 3 33,  

where a i is the surface density of particles; 3i is the lifetime of a particle on the surface; xi = pi/~vr-~-m~mkT is the 

number of gas particles incident on unit area of the membrane end in one second. 

The first equation in system (14) pertains to the left-hand end face, the second equation is for channel 

walls, and the third equation pertains to the right-hand end face. We assume that ai is much less than the maximum 

density on the surface am. 

The boundary conditions for this system are as follows: 

O c~ 1 Oa 3 
[ = O" -~r [  = 0 # l l r=R  =/~Zlx=0; #alr=R =/~Zlx=L,  Or r=A ' r=A ' 

0(9" 1 0(7 2 . 0o'3 0o" 2 

D1 --~-r [r=R = 02 '-~-X [x=0 ' -- D3 ~ r=R = D2 ~-x [x=L ' (15) 

where/~i = Ui + kT In a i and Ui are the chemical potential and the heat of adsorption of gas atoms on the surface. 

The solution of the diffusion equation of system (14) in cylindrical coordinates is 

r )  +C2i'o(r) a i (r) = Cli K 0 ~ ~ , 

where i = l,  2 is the left-hand and right-hand end; KO, Io are Bessel functions. 

Solving system (14) with boundary conditions (15), we arrive at an expression for the density of particle 

flow through the membrane: 

D 2 32 
J = ("1 - " 9  • 

lo 

+ VrD3 33 D2 
2R D 3 

L ~ 31 D2 

11 

R 

R 

- 11 

- 11 

( R _ i1  ( A ) Ko (R /V~ 131)  
Io ~ ~ KI (A/Vr-~l 7; 1 ) 

(R) ( ) i1 ~ _ 11 A 

(A)  Ko 
D V ~ 3  z 3 K 1 (A/Dvr-D-~3 z3) 

where Jv is the volume flow of particles through a channel. 

K 0 (R/DV~-~3v3) 

K 1 (A/DV~-~3T3) 

K 1 ( R / f f ~ l  31) 

-1 

+ 

+ Jv (16) 
7rA2 ' 

The first summand in (16) characterizes the flux density due to surface diffusion, and the second summand 

due to volume diffusion. We consider the case where the volume flow may be neglected compared to the surface 
flow. It may be inferred from expression (16) that the terms standing after L~ (2R) are responsible for the influence 
of the end faces on the flow. Apparently, they may be interpreted as the surface resistances of the end faces. 

Without loss of generality, it may be considered that D] = D3 and T 1 = 3 3 since the expressions responsible for the 
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contribution of both ends are summands (their contributions are additive). In the case where the ends are the same, 

we have 

J = (t':l --/r (D2 z'2/A2) X 
L V ~ r  D2 ~--d + -g 

1(0 (R/Vr-o7;) -1 

x~ (a/4-6-?~ ) 

x~ (R/D4b-~;) 
x~ (a/oCb-;) 

(17) 

We now consider two limiting cases of expression (17). 

1. The  migration length of atoms on the end faces is much less than the cell dimension ~ << A, i.e., the 

channels are independent  of each other and between them there is a large undisturbed region with a uniform surface 

density. In this case 

D2 z:2/A2 1 
J =  (xl - x 3 )  - Jk 

L ~ z h X ' o ( R / v ~ )  ~a  2 ' 
- -  @ - -  

XR R D K I ( R / d - ~ )  

where Jk is the flow through one channel in the membrane, provided no other channels exist. 

An account for the migration of atoms o n t h e  end faces of the membrane leads to a small correction for the 

channel length in this case. 

2. The migration length of atoms on the end faces is much larger than the cell dimension ~ >> A: 

J = (/r -- tr 
D 2 r2 /A 2 

L D2 r2 1 
- - + 2  - -  
2R A 2 1 - RX/A 2 

(18) 

If we take into account that the membrane accumulates all molecules, including those incident on the 

channel  wells, then RZ/A 2 disappears in the denominator.  For R << A, we obtain that the flow through the 

membrane is the maximum possible in the limit D2r2/A 2 >> L/(2R): 

1 1 
y = ~ v~ (ha - nb) 3 '  

which coincides with the analogous limit for a solid membrane (7). 

If we take expression (11) for D2 and R << D in (18), then we arrive at 

1 1 
j = -~ vt (ha - nb) 

2 + - - ~ e x p  - -  ~ 
kT 2R 

(19) 

It is easy to see that formulas (6) a n d  (19) are analogous. 

Passage in the limit from a porous to a solid membrane may be performed by taking the cell radius and 

the pore diameter  equal to the lattice spacing and half the lattice spacing, respectively, i.e., 2A = 6 and 4R = 6. In 

this case, formulas (6) and (19) coincide completely. 
To perform a rigorous passage in the limit without loss of any information, it is necessary to have a unified 

membrane model that includes the models discussed above as limiting cases. Such a model must be based on the 

particle distribution functions inside the channels, on the surface of the membrane,  and inside it. 
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N O T A T I O N  

L, membrane thickness; U, heat of gas adsorption; Q, heat of gas dissolution in the membrane; E, activation 
energy of diffusion; Eg, activation energy of diffusion in a near-surface layer; na, nb, ni, numerical density of gas 

particles on the both sides of the membrane and in the i-th layer, respectively; v, mean thermal velocity of 
molecules; l, number of membrane layers; 8, lattice spacing; 7, particle flow density in the membrane; ao, al, 

surface resistance of the membrane; nm, maximum gas density on the surface; D, gas diffusion coefficient in the 

membrane; To, oscillation period of a particle in a potential well; aef, effective gas solubility in the membrane; A, 
distance between the centers of neighboring channels; R, channel radius; a, surface density of particles; 3, particle 

lifetime on the surface; p, gas pressure;/~, chemical potential of gas atoms; K0, I0, Bessel functions; Jr, volume gas 

flow through a channel; k, Boltzmann constant; T, gas temperature; no, nl, numerical densities of gas particles on 
the left- and right-hand surfaces of the membrane. 

R E F E R E N C E S  

. 

2. 

. 

4. 

. 

A. Peterlin, Polymer Eng. Sci., 16, No. 3, 126 (1976). 

A. A. Ovchinnikov, S. K. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controllable Chemical Processes [in 

Russian ], Moscow (1986). 

V. V. Ovchinnikov, V. I. Kuznetsov, B. T. Porodnov, et. al., Kolloidn. Zh., 1, No. 1, 64-69 (1988). 

A. G. Kotov and V. V. Gromov, Radiation Physics and Chemistry of Heterogeneous Systems [in Russian ], 
Moscow (1988). 

N. N. Nikolaev, Diffusion in Membranes ]in Russian ], Moscow (1980). 

419 


